节点文献
在初中数学中如何培养学生的几何推理能力
【关键词】 ;
【正文】“图形与几何”是初中数学中一个十分重要的部分,同时也是基础部分。传统的初中数学课堂教学中,教师通常只是让学生进行“题海战术”,也就是要求学生通过做题掌握“图形与几何”的知识内容。很显然,这样的教师方式是不合理的。教师通过让学生不断地做题,很容易使学生产生厌学情绪,从而进一步影响到他们的学习效率。根据新课改的要求,数学教师在讲解“图形与几何”的过程中应该采用“合情推理”的方式进行教学,从而使学生不断地加深对于这部分的掌握程度。
一、灵活运用合情推理,培养学生学习兴趣
合情推理指的就是,教师引导学生针对某一知识点进行推理,通过推理这种方式可以不断地加深学生对于所学知识的印象。“图形与几何”的数学知识中涉及到点线面三部分,内容较为抽象,会使学生学习起来存在一定的难度。传统的教师中,教师往往直接指出相应的知识点,然后让学生针对与该知识点相关的题目进行练习。这样的学习很可能会使学生产生厌烦情绪,不利于他们的学习。教师应该灵活运用合情推理,帮助学生提高对于“图形与几何”的学习兴趣。
二、创设教学情境,提高课堂教学的有效性
教学情境的创设事实上也是合情推理教学的一个重要部分。学生在刚接触“图形与几何”时,会觉得其较为抽象。如果学生在相应的教学情境下进行学习,就会使他们能够透过现象抓住事物的本质,从而学会如何运用所学知识。也就是说,教师应该根据“图形与几何”的内容创设相应的教学情境,然后指导学生进行推理。通过情境的创设,教师可以让学生发现重难点知识内容,从而提出自己的推理和假设,提高自己的分析能力。
三、分清合情推理与演绎推理,发挥合情推理的作用
从具体问题出发,进行“观察和猜想”,然后再“归纳和类比”,最后提出猜想的过程,我们称之为“合情推理”。“演绎推理”是由一般到特殊的推理过程。两者存在一定多个差别,但是在“图形与几何”教学中是紧密相连的。教师在教学的过程中,应该看到两者的差别,更重要的是看清二者之间的联系。这样才能够帮助学生更好地进行区分,充分发挥合情推理的作用。
四、巧用基本图形进行推理
(一)掌握简单图形
初做立体几何题时,学生会分不清几何与代数之间的差别,有时也会用错方式和方法,这时只要巧妙运用基本的几何图形,就能很快找到解题方法。基本的图形在解题中比较常见,通常会在题中出现证明相似、相等这样的字眼时用到。这就要求学生对基本图形有一定的了解,在复杂的图形中找出基本图形。复杂图形都是基本图形组成的,所以学生在做题时不用担心找不到解题方法,只要把基本的图形从复杂图形中挑出来,几何证明就会变得简单了。基本图形有很多种,有的只要稍稍变化就可以成为另一种图形,所以我们在运用基本图形时,可以多变化几种形式,如三角形可以有等腰三角形、等边三角形等,这样学生在进行几何推理时就更加方便了。
(二)图形简单化
由于几何推理是在图形中进行有规则的分析和解答。当图形比较复杂时,我们可以考虑把图形中对解决问题有用的一部分分离出来,一步一步地进行解答,这样有利于学生的进一步思考。对于分离图形,我们可以根据已知条件来进行,这样的分离方式不会遗漏任何条件,并且能使学生对题目有更准确的分析和判断。图形分离的越简单,对学生解题就越有利,所以在分析图形时,积极拆分图形是很有必要的。
三、明确题目中各要素
在几何推理命题中,题目的各个给出条件都是很重要的,通过这些,我们可以知道哪些是已经知晓的,可以直接用来解题,哪些条件能够推出结论,特别是在复杂的命题面前,这些因素都要考虑。在解题中,找到各种条件是很重要的,把握条件和结论之间的逻辑关系也是解题的关键,如从已知条件推出什么样的结论,什么样的结论该由哪些条件推理得出,包括怎样推出。读题是解答几何图形的关键步骤,题中的一些关键字眼可以帮助我们完成几何推理的过程。因此,掌握好各要素,并加以分析,在几何解题中有着不可或缺的意义。
五、正确利用辅助线推理
(一)辅助线的重要作用
辅助线是几何推理中的重要的部分,辅助线可以分解图形,更有利于推理和分析。在分析如何绘制辅助线时,我们要仔细观察图形的特点,比如,三角形的辅助线多以某一顶点开始;而立方体的辅助线多是在空间中体现的,有时甚至是在不同面连接而成。
(二)合理的推理过程
初中数学几何更倾向的是考查学生的推理思维能力,单一的死记硬背不能应用于所有几何推理中,只有找到几何推理的窍门并加以运用,才能在每一种几何推理中取得成功。注重面与面之间的构成关系,以及线与线之间的连接关系是推理的重要步骤。在做好辅助线后,一定要标明各个线面的名称,为后续的推理做铺垫。在几何推理中,面面证明和线线证明是很重要的,我们要理清每一个面之间的合理关系及线与线的相辅关系。
六、运用多媒体进行教学
我认为几何教学过程中的关键是让学生掌握知识的形成过程,使学生知其然,又知其所以然。运用多媒体教学可以将教学中涉及的事物形象、过程等全部内容再现于课堂,使教学过程形象生动,使难以觉察的东西清晰地呈现在学生的感觉能力可及的范围之内。例如:在教学“角的认识”这一课时,教学生如何画角是一个重要内容。教师用传统的教学方法在黑板上画给学生看,存在着一定的弊端。
综上所述,根据新课改的要求,数学教师在讲解“图形与几何”的过程中应该采用“合情推理”的方式进行教学,从而使学生不断地加深对于这部分的掌握程度。首先,教师应该灵活运用合情推理,培养学生学习兴趣;其次,教师应该创设教学情境,提高课堂教学的有效性;最后,教师还应该分清合情推理与演绎推理,充分发挥合情推理的作用。
一、灵活运用合情推理,培养学生学习兴趣
合情推理指的就是,教师引导学生针对某一知识点进行推理,通过推理这种方式可以不断地加深学生对于所学知识的印象。“图形与几何”的数学知识中涉及到点线面三部分,内容较为抽象,会使学生学习起来存在一定的难度。传统的教师中,教师往往直接指出相应的知识点,然后让学生针对与该知识点相关的题目进行练习。这样的学习很可能会使学生产生厌烦情绪,不利于他们的学习。教师应该灵活运用合情推理,帮助学生提高对于“图形与几何”的学习兴趣。
二、创设教学情境,提高课堂教学的有效性
教学情境的创设事实上也是合情推理教学的一个重要部分。学生在刚接触“图形与几何”时,会觉得其较为抽象。如果学生在相应的教学情境下进行学习,就会使他们能够透过现象抓住事物的本质,从而学会如何运用所学知识。也就是说,教师应该根据“图形与几何”的内容创设相应的教学情境,然后指导学生进行推理。通过情境的创设,教师可以让学生发现重难点知识内容,从而提出自己的推理和假设,提高自己的分析能力。
三、分清合情推理与演绎推理,发挥合情推理的作用
从具体问题出发,进行“观察和猜想”,然后再“归纳和类比”,最后提出猜想的过程,我们称之为“合情推理”。“演绎推理”是由一般到特殊的推理过程。两者存在一定多个差别,但是在“图形与几何”教学中是紧密相连的。教师在教学的过程中,应该看到两者的差别,更重要的是看清二者之间的联系。这样才能够帮助学生更好地进行区分,充分发挥合情推理的作用。
四、巧用基本图形进行推理
(一)掌握简单图形
初做立体几何题时,学生会分不清几何与代数之间的差别,有时也会用错方式和方法,这时只要巧妙运用基本的几何图形,就能很快找到解题方法。基本的图形在解题中比较常见,通常会在题中出现证明相似、相等这样的字眼时用到。这就要求学生对基本图形有一定的了解,在复杂的图形中找出基本图形。复杂图形都是基本图形组成的,所以学生在做题时不用担心找不到解题方法,只要把基本的图形从复杂图形中挑出来,几何证明就会变得简单了。基本图形有很多种,有的只要稍稍变化就可以成为另一种图形,所以我们在运用基本图形时,可以多变化几种形式,如三角形可以有等腰三角形、等边三角形等,这样学生在进行几何推理时就更加方便了。
(二)图形简单化
由于几何推理是在图形中进行有规则的分析和解答。当图形比较复杂时,我们可以考虑把图形中对解决问题有用的一部分分离出来,一步一步地进行解答,这样有利于学生的进一步思考。对于分离图形,我们可以根据已知条件来进行,这样的分离方式不会遗漏任何条件,并且能使学生对题目有更准确的分析和判断。图形分离的越简单,对学生解题就越有利,所以在分析图形时,积极拆分图形是很有必要的。
三、明确题目中各要素
在几何推理命题中,题目的各个给出条件都是很重要的,通过这些,我们可以知道哪些是已经知晓的,可以直接用来解题,哪些条件能够推出结论,特别是在复杂的命题面前,这些因素都要考虑。在解题中,找到各种条件是很重要的,把握条件和结论之间的逻辑关系也是解题的关键,如从已知条件推出什么样的结论,什么样的结论该由哪些条件推理得出,包括怎样推出。读题是解答几何图形的关键步骤,题中的一些关键字眼可以帮助我们完成几何推理的过程。因此,掌握好各要素,并加以分析,在几何解题中有着不可或缺的意义。
五、正确利用辅助线推理
(一)辅助线的重要作用
辅助线是几何推理中的重要的部分,辅助线可以分解图形,更有利于推理和分析。在分析如何绘制辅助线时,我们要仔细观察图形的特点,比如,三角形的辅助线多以某一顶点开始;而立方体的辅助线多是在空间中体现的,有时甚至是在不同面连接而成。
(二)合理的推理过程
初中数学几何更倾向的是考查学生的推理思维能力,单一的死记硬背不能应用于所有几何推理中,只有找到几何推理的窍门并加以运用,才能在每一种几何推理中取得成功。注重面与面之间的构成关系,以及线与线之间的连接关系是推理的重要步骤。在做好辅助线后,一定要标明各个线面的名称,为后续的推理做铺垫。在几何推理中,面面证明和线线证明是很重要的,我们要理清每一个面之间的合理关系及线与线的相辅关系。
六、运用多媒体进行教学
我认为几何教学过程中的关键是让学生掌握知识的形成过程,使学生知其然,又知其所以然。运用多媒体教学可以将教学中涉及的事物形象、过程等全部内容再现于课堂,使教学过程形象生动,使难以觉察的东西清晰地呈现在学生的感觉能力可及的范围之内。例如:在教学“角的认识”这一课时,教学生如何画角是一个重要内容。教师用传统的教学方法在黑板上画给学生看,存在着一定的弊端。
综上所述,根据新课改的要求,数学教师在讲解“图形与几何”的过程中应该采用“合情推理”的方式进行教学,从而使学生不断地加深对于这部分的掌握程度。首先,教师应该灵活运用合情推理,培养学生学习兴趣;其次,教师应该创设教学情境,提高课堂教学的有效性;最后,教师还应该分清合情推理与演绎推理,充分发挥合情推理的作用。
- 【发布时间】2016/8/6 14:52:12
- 【点击频次】272